632 research outputs found

    Fecal Coliform Concentrations in the Upper Cohansey River Watershed Predicted by Air Temperature, Discharge, and Land Use

    Get PDF
    The Upper Cohansey River Watershed in southwestern New Jersey has a history of being affected by fecal coliform bacteria (FC). A study was undertaken to investigate the environmental factors associated with FC concentration. For 44% of samples taken throughout the watershed in 2012–2013, FC concentration exceeded the benchmark value. FC levels were related to air temperature, river discharge, and land use in stream buffers. Human sources of FC had been eliminated following research results published in 2009. Results of the study reported in this article suggest the need to further investigate wildlife sources of FC and to implement additional mitigation actions

    Material Recognition in the Wild with the Materials in Context Database

    Full text link
    Recognizing materials in real-world images is a challenging task. Real-world materials have rich surface texture, geometry, lighting conditions, and clutter, which combine to make the problem particularly difficult. In this paper, we introduce a new, large-scale, open dataset of materials in the wild, the Materials in Context Database (MINC), and combine this dataset with deep learning to achieve material recognition and segmentation of images in the wild. MINC is an order of magnitude larger than previous material databases, while being more diverse and well-sampled across its 23 categories. Using MINC, we train convolutional neural networks (CNNs) for two tasks: classifying materials from patches, and simultaneous material recognition and segmentation in full images. For patch-based classification on MINC we found that the best performing CNN architectures can achieve 85.2% mean class accuracy. We convert these trained CNN classifiers into an efficient fully convolutional framework combined with a fully connected conditional random field (CRF) to predict the material at every pixel in an image, achieving 73.1% mean class accuracy. Our experiments demonstrate that having a large, well-sampled dataset such as MINC is crucial for real-world material recognition and segmentation.Comment: CVPR 2015. Sean Bell and Paul Upchurch contributed equall

    A limit on nonlocality in any world in which communication complexity is not trivial

    Full text link
    Bell proved that quantum entanglement enables two space-like separated parties to exhibit classically impossible correlations. Even though these correlations are stronger than anything classically achievable, they cannot be harnessed to make instantaneous (faster than light) communication possible. Yet, Popescu and Rohrlich have shown that even stronger correlations can be defined, under which instantaneous communication remains impossible. This raises the question: Why are the correlations achievable by quantum mechanics not maximal among those that preserve causality? We give a partial answer to this question by showing that slightly stronger correlations would result in a world in which communication complexity becomes trivial.Comment: 13 pages, no figure

    Senior Recital: Kerry Brunson, saxophone

    Get PDF
    This recital is presented in partial fulfillment of the requirements for the degree Bachelor of Music in Performance Ms. Brunson studies saxophone with Sam Skelton.https://digitalcommons.kennesaw.edu/musicprograms/1638/thumbnail.jp

    High Depth-of-Discharge Zinc Rechargeability Enabled by a Self-Assembled Polymeric Coating

    Get PDF
    Zinc has the potential for widespread use as an environmentally friendly and cost-effective anode material pending the resolution of rechargeability issues caused by active material loss and shape change. Here, a self-assembled Nafion-coated Celgard 3501 (NC-Celgard) separator is shown to enable unprecedented cycle life of a Zn anode in alkaline electrolyte at high depth-of-discharge (DODZn). Using commercially relevant energy-dense electrodes with high areal capacities of 60 mAh cm–2, Zn–Ni cells tested at 20% DODZn cells achieve over 200 cycles while 50% DODZn cells achieve over 100 cycles before failure. The 20% and 50% DOD cells deliver an average of 132 and 180 Wh L–1 per cycle over their lifetime respectively. Rechargeability is attributed to the highly selective diffusion properties of the 300 nm thick negatively charged Nafion coating on the separator which prevents shorting by dendrites and inhibits redistribution of the active material. Crossover experiments show that the NC-Celgard separator is practically impermeable to zincate ([Zn(OH)4]2–), outperforming commercial Celgard, cellophane, Nafion 211 and 212 separators while still allowing hydroxide transport. This work demonstrates the efficacy of selective separators for increasing the cycle life of energy-dense Zn electrodes without adding significant volume or complexity to the system

    Analisis dan Perancangan Sistem Akuntansi dengan Model Driven Development (MDD) Pada Konveksi Anemarie

    Get PDF
    Informasi Akuntansi merupakan salah satu alat untuk mengambil keputusan dalam perusahaan.Sistem Informasi Akuntansi dapat memberikan kemudahan dalam menghasilkan informasi yang akurat, tepat waktu dapat dipahami dan teruji.Selain itu, sistem informasi akuntansi dapat memudahkan siklus operasional perusahaan baik dari pembelian, produksi, sampai penjualan.Maka dari uraian itu, peneliti ingin menganalisis dan merancang sistem informasi akuntansi pada usaha yang tidak memiliki sistem informasi akuntansi dan masih melakukan pencatatan secara manual. Peneliti menggunakan data sistem akuntansi Konveksi Anemarie periode April 2017 dan Model Driven Development untuk merancang Sistem Informasi Akuntansi konveksi Anemarie. Hasil pengembangan Sistem Informasi Akuntansi dengan Model Driven Development ini ialah Desain Model Data dengan Entity Relathionship diagram baik secara keseluruhan maupun per subsistem, Desain model Proses dengan Data Flow Diagram, dan desain model output dengan pembuatan interface dari form yang dibutuhka

    Cell-free DNA ultra-low-pass whole genome sequencing to distinguish malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion: A cross-sectional study

    Get PDF
    BACKGROUND: The leading cause of mortality for patients with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome is the development of malignant peripheral nerve sheath tumor (MPNST), an aggressive soft tissue sarcoma. In the setting of NF1, this cancer type frequently arises from within its common and benign precursor, plexiform neurofibroma (PN). Transformation from PN to MPNST is challenging to diagnose due to difficulties in distinguishing cross-sectional imaging results and intralesional heterogeneity resulting in biopsy sampling errors. METHODS AND FINDINGS: This multi-institutional study from the National Cancer Institute and Washington University in St. Louis used fragment size analysis and ultra-low-pass whole genome sequencing (ULP-WGS) of plasma cell-free DNA (cfDNA) to distinguish between MPNST and PN in patients with NF1. Following in silico enrichment for short cfDNA fragments and copy number analysis to estimate the fraction of plasma cfDNA originating from tumor (tumor fraction), we developed a noninvasive classifier that differentiates MPNST from PN with 86% pretreatment accuracy (91% specificity, 75% sensitivity) and 89% accuracy on serial analysis (91% specificity, 83% sensitivity). Healthy controls without NF1 (participants = 16, plasma samples = 16), PN (participants = 23, plasma samples = 23), and MPNST (participants = 14, plasma samples = 46) cohorts showed significant differences in tumor fraction in plasma (P = 0.001) as well as cfDNA fragment length (P \u3c 0.001) with MPNST samples harboring shorter fragments and being enriched for tumor-derived cfDNA relative to PN and healthy controls. No other covariates were significant on multivariate logistic regression. Mutational analysis demonstrated focal NF1 copy number loss in PN and MPNST patient plasma but not in healthy controls. Greater genomic instability including alterations associated with malignant transformation (focal copy number gains in chromosome arms 1q, 7p, 8q, 9q, and 17q; focal copy number losses in SUZ12, SMARCA2, CDKN2A/B, and chromosome arms 6p and 9p) was more prominently observed in MPNST plasma. Furthermore, the sum of longest tumor diameters (SLD) visualized by cross-sectional imaging correlated significantly with paired tumor fractions in plasma from MPNST patients (r = 0.39, P = 0.024). On serial analysis, tumor fraction levels in plasma dynamically correlated with treatment response to therapy and minimal residual disease (MRD) detection before relapse. Study limitations include a modest MPNST sample size despite accrual from 2 major referral centers for this rare malignancy, and lack of uniform treatment and imaging protocols representing a real-world cohort. CONCLUSIONS: Tumor fraction levels derived from cfDNA fragment size and copy number alteration analysis of plasma cfDNA using ULP-WGS significantly correlated with MPNST tumor burden, accurately distinguished MPNST from its benign PN precursor, and dynamically correlated with treatment response. In the future, our findings could form the basis for improved early cancer detection and monitoring in high-risk cancer-predisposed populations

    Effect modification of greenness on the association between heat and mortality: A multi-city multi-country study

    Get PDF
    Background: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. Methods: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations. Findings: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. Interpretation: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change.Research in context - I-Evidence before this study: Urbanization and climate change have resulted in changes to the urban environment, including the urban heat island effect and contributions to other extreme weather events. Recently, as metropolitan areas have become denser due to rapid urbanization, environmental problems such as high temperatures are also worsening. Many studies showed that high temperatures increase health risks, including mortality. Therefore, identifying factors that could mitigate the high-temperature conditions in urban environments are a crucial part of climate change mitigation strategies. Many studies found that urban green spaces may play an important role in mitigating heat. Specifically, large green spaces have shown a significant and positive cooling effect. Vegetation can promote air convection through shading and evapotranspiration, which indicates that dense vegetation can lower air temperature. Therefore, more greenspace could result in lower temperatures during the warm season, which would lower exposure to high temperatures that impact human health. Importantly, while greenspace can lower exposure to heat, this study examined how greenspace modifies the heat-health relationship. Some studies have investigated this issue. For example, studies found that heat-related mortality and ambulance calls are negatively correlated with the amount of greenspace coverage. However, most previous work on how greenspace modifies the heat-health relationship was based on one country or region. Research is needed on a global scale to understand how greenspace in urban areas among different countries, with different populations, levels of urbanization, and types of greenspace, can modify the relationship between extreme temperatures and health. As climate change is anticipated to increase temperatures and the associated health consequences worldwide, greenspace may be a plausible mitigation strategy for cities in order to address heat-related health impacts at present and in the future. II-Added value of this study: In this study, we explored the effect modification of greenspace on the heat-mortality relationship on a global scale. With a dataset of 452 locations from 24 countries located in various climate zones and continents, this study incorporated variability in greenspace, temperature, and population characteristics. We found that, based on 452 locations, the heat-mortality risks differed with greenspace category and the cities with higher greenspace values had lower heat-mortality risk than those with lower greenspace values. III-Implications of all the available evidence: Our findings provide evidence that higher greenspace reduces the heat-related mortality, which is similar to other previous smaller studies, and our study results were consistent in different countries around various climate zones. These findings indicate that disparate greenspace levels, temperature, and environment settings should be considered when developing policies and strategies in climate change mitigation and public health adaptation. This study adds to the existing literature that greenspace can reduce the urban heat island effect, by providing evidence for the theory that greenspace can also lower the heat-mortality association, and documents such impacts on a global scale.This publication was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. Research reported in this publication was also supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. Also, this work has been supported by the National Research Foundation of Korea (2021R1A6A3A03038675), Medical Research Council-UK (MR/V034162/1 and MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), Academy of Finland (Grant ID: 310372), European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655 and 874990), Czech Science Foundation (22-24920S), Emory University's NIEHS-funded HERCULES Center (Grant ID: P30ES019776), and Grant CEX2018-000794-S funded by MCIN/AEI/ 10.13039/501100011033.info:eu-repo/semantics/publishedVersio
    • …
    corecore